Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2246228, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37585594

RESUMO

The mitogen-activated protein kinase (MAPK) cascade pathway is a highly conserved plant cell signaling pathway that plays an important role in plant growth and development and stress response. Currently, MAPK cascade genes have been identified and reported in a variety of plants including Arabidopsis thaliana, Oryza sativa, and Triticum aestivum, but have not been identified in foxtail millet (Setaria italica). In this study, a total of 93 MAPK cascade genes, including 15 SiMAPKs, 10 SiMAPKKs and 68 SiMAPKKKs genes, were identified by genome-wide analysis of foxtail millet, and these genes were distributed on nine chromosomes of foxtail millet. Using phylogenetic analysis, we divided the SiMAPKs and SiMAPKKs into four subgroups, respectively, and the SiMAPKKKs into three subgroups (Raf, ZIK, and MEKK). Whole-genome duplication analysis revealed that there are 14 duplication pairs in the MAPK cascade family in foxtail millet, and they are expanded by segmental replication events. Results from quantitative real-time PCR (qRT-PCR) revealed that the expression levels of most SiMAPKs and SiMAPKKs were changed under both exogenous hormone and abiotic stress treatments, with SiMAPK3 and SiMAPKK4-2 being induced under almost all treatments, while the expression of SiMAPKK5 was repressed. In a nutshell, this study will shed some light on the evolution of MAPK cascade genes and the functional mechanisms underlying MAPK cascade genes in response to hormonal and abiotic stress signaling pathways in foxtail millet (Setaria italica).


Assuntos
Arabidopsis , Setaria (Planta) , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética , Família Multigênica , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Plant Physiol Biochem ; 190: 262-276, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152511

RESUMO

As a multifunctional phytohormone, melatonin (Mel) plays pivotal roles in plant responses to multiple stresses. However, its mechanism of action remains elusive. In the present study, we evaluated the role of NO and Ca2+ signaling in Mel enhanced cold tolerance in winter turnip rape. The results showed that the NO content and concentration of intracellular free Ca2+ ([Ca2+]cyt) increased by 35.42% and 30.87%, respectively, in the leaves of rape seedlings exposed to cold stress. Compared with those of the seedlings in cold stress alone, the NO content and concentration of [Ca2+]cyt in rape seedlings pretreated with Mel increased further. In addition, the Mel-mediated improvement of cold tolerance was inhibited by L-NAME (a NO synthase inhibitor), tungstate (a nitrate reductase inhibitor), LaCl3 (a Ca2+ channel blocker), and EGTA (a Ca2+ chelator), and this finding was mainly reflected in the increase in ROS content and the decrease in osmoregulatory capacity, photosynthetic efficiency and antioxidant enzyme activities, and expression levels of antioxidant enzyme genes. These findings suggest that NO and Ca2+ are necessary for Mel to improve cold tolerance and function synergistically downstream of Mel. Notably, the co-treatment of Mel with L-NAME, tungstate, LaCl3, or EGTA also inhibited the Mel-induced expression of MAPK3/6 under cold stress. In conclusion, NO and Ca2+ are involved in the enhancement of cold tolerance induced by Mel through activating the MAPK cascades in rape seedlings, and a crosstalk may exist between NO and Ca2+ signaling.


Assuntos
Brassica napus , Brassica rapa , Melatonina , Antioxidantes/metabolismo , Brassica napus/metabolismo , Brassica rapa/genética , Quelantes/metabolismo , Ácido Egtázico , Melatonina/metabolismo , Melatonina/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Compostos de Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...